Natural boundary of random Dirichlet series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural Boundary of Random Dirichlet Series

For the random Dirichlet series ∞ ∑ n=0 Xn(ω) e−sλn (s = σ + it ∈ C, 0 = λ0 < λn ↑ ∞), whose coefficients are uniformly nondegenerate independent random variables, we provide some explicit conditions for the line of convergence to be its natural boundary a.s. Running Title Natural Boundary of Random Dirichlet Series

متن کامل

Natural Boundaries of Dirichlet Series

We prove some conditions on the existence of natural boundaries of Dirichlet series. We show that generically the presumed boundary is the natural one. We also give an application of natural boundaries in determining asymptotic results.

متن کامل

Julia Lines of General Random Dirichlet Series

In this paper, we consider a random entire function f(s, ω) defined by a random Dirichlet series ∑∞ n=1Xn(ω)e −λns whereXn are independent and complex valued variables, 0 6 λn ր +∞. We prove that under natural conditions, for some random entire functions of order (R) zero f(s, ω) almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J....

متن کامل

Integral Means and Boundary Limits of Dirichlet Series

We study the boundary behavior of functions in the Hardy spaces H p for ordinary Dirichlet series. Our main result, answering a question of H. Hedenmalm, shows that the classical F. Carlson theorem on integral means does not extend to the imaginary axis for functions in H ∞, i.e., for ordinary Dirichlet series in H∞ of the right half-plane. We discuss an important embedding problem for H , the ...

متن کامل

Dirichlet Series

This definition could have been given to an 18th or early 19th century mathematical audience, but it would not have been very popular: probably they would not have been comfortable with the Humpty Dumpty-esque redefinition of multiplication. Mathematics at that time did have commutative rings: rings of numbers, of matrices, of functions, but not rings with a “funny” multiplication operation def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ukrainian Mathematical Journal

سال: 2006

ISSN: 0041-5995,1573-9376

DOI: 10.1007/s11253-006-0124-3